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Abstract 

This paper presents a computational model for predicting concrete strength based on coarse sum 

of mix ratios, aggregate size, and water-cement ratio.Laboratory data from John (2024) were used 

to establish the model, incorporating three different coarse aggregate sizes (7 mm, 18 mm, and 22 

mm), three mix ratios by weight (1:3:6, 1:2:4, and 1:1.5:3), and six water-cement ratios (0.3–0.6). 

After successfully conducting the Design of Experiment (DOE) on the laboratory data obtained 

from John (2024), the data was analyzed and used to develop a regression model. A multiple 

regression model was employed to analyse the relationship between these variables and 

compressive strength. Analysis of Variance (ANOVA) was conducted to measure the implication of 

the predictive model and validate the reliability of the laboratory data. The proposed model was 

verified using laboratory data available in existing literature.The final computational model 

demonstrated a strong predictive capability, with an R² value of 0.959, indicating that the model 

explains 95.9% of the variation in compressive strength. The model was implemented using 

Python, and statistical analysis confirmed its reliability and significance (p < 0.05). The findings 

highlight the potential of computational modeling to optimize concrete mix designs, reduce 

reliance on laboratory testing, and promote data-driven approaches in civil engineering. 
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INTRODUCTION 

Concrete is among the most commonly used construction materials because of its longevity and 

affordability(Demissew, 2022; Garg et al., 2023; Shukla & Kaul, 2025). Its mechanical 

properties, particularly compressive strength, play a crucial role in determining structural 

performance (Shafighfard et al., 2024; Kumar & Pratap, 2024; Bentegri et al., 2025). Various 

factors influence the compressive strength of concrete, including the properties of aggregates, the 

water-cement ratio, and the overall mix composition. Understanding these relationships is 

necessary for optimizing concrete mix designs (Hooton & Bickley, 2014), ensuring quality control 

(Day, 2006), and improving the sustainability of concrete production (Richardson,2023). 

Traditionally, concrete mix design has relied on empirical methods (Ikumi et al., 2022), such as 

the British Department of Environment and American Concrete Institute methods, which provide 

guidelines for achieving desired strength based on experimental data. However, these approaches 
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often require extensive laboratory testing, making the whole process time-consuming and 

resource-intensive. With advancements in computational modeling and data-driven approaches, 

predictive models have gained significant attention as efficient tools for estimating concrete 

properties based on mix design parameters (Ziolkowski, 2023). 

The aggregate size significantly affects the strength and workability of concrete (Mohammed & 

Al-Mashhadi, 2020; John, 2024). Coarse aggregates contribute to the load-bearing capacity 

(Wang et al., 2022), while finer aggregates improve cohesion and compactness (Ling & Kwan, 

2015). The water-cement (W/C) ratio is another critical factor, as it directly influences the 

hydration process and porosity of hardened concrete(Li el., 2022). An optimal balance between 

water content and cementitious materials is essential for achieving high strength while maintaining 

adequate workability. Additionally, the total mix composition, including the proportion of cement, 

aggregates, and admixtures, governs the overall behaviour of the concrete (Zhou et al., 2021). 

Recent developments in computational modeling, such as regression analysis, artificial 

intelligence, and machine learning, offer new possibilities for predicting concrete strength with 

high accuracy (Nunez et al., 2021; Ahmad et al., 2023). These models can analyse complex 

relationships between mix parameters and compressive strength, reducing reliance on extensive 

laboratory experiments. By developing a computational model based on aggregate size, W/C ratio, 

and total mix composition, compressive strength of concrete can be determinedwithout the need 

for laboratory testing, making the process more cost-effective. 

This study aims to develop a predictive computational model for estimating the compressive 

strength of concrete using aggregate size, water-cement ratio, and total mix composition. The 

proposed model will enhance efficiency in mix design optimization, reduce material waste, and 

support the advancement of data-driven approaches in civil engineering. 

METHODOLOGY 

The laboratory data used for the development of the computational model was obtained from John 

(2024). The author considered three different coarse aggregatesizes 7, 18 and 22mm andmix ratios 

by weight: 1:3:6, 1:2:4, and 1:1.5:3, with water-cement ratios of 0.3, 0.35, 0.4, 0.5, 0.55, and 0.6. 

For each water-cement ratio, three concrete cubes were cast, resulting in a total of 18 cubes for 

each mix grade according to John (2024). 

Table 1 provides a detailed overview of the Design of Experiment (DOE) for 28-day compressive 

strength of concrete used for the data obtained from John (2024). It outlines the different 

experimental conditions, including the selected coarse aggregate sizes, mix ratios, and water-

cement ratios, along with the corresponding concrete strength for each mix. This structured 

approach ensures a comprehensive analysis of how these factors influence the concrete properties. 
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Table 1: Detailed overview of the DOE (John, 2024) 

Independent 

variable 1 

(Water/cement 

ratio) 

Independent variable 2 

(Coarse agg. Size, 

mm)  

Independent variable 3 

(sum of mix  

ratios)  

Dependent variable 1 

(Compressive 

strength, MPa) 

0.35 7.0 10.0 6.14 

0.5 18.0 7.0 22.1 

0.4 7.0 5.5.0 16.96 

0.6 22.0 5.5.0 27.92 

0.4 18.0 10.0 6.29 

0.55 7.0 5.5.0 34.22 

0.5 18.0 7.0 22.1 

0.3 7.0 7.0 16.73 

0.3 7.0 10.0 5.03 

0.4 18 5.5.0 15.92 

0.6 7.0 10.0 8.58 

0.5 22.0 10.0 7.84 

0.3 22.0 5.5.0 12.44 

0.5 7.0 7.0 23.7 

0.5 22.0 10.0 7.84 

0.6 22.0 7.0 20.36 

0.3 7.0 7.0 16.73 

0.3 18.0 10.0 4.14 

0.3 7.0 5.5.0 13.62 

0.6 18.0 10.0 5.62 

0.3 22.0 7.0 15.55 

0.35 18.0 7.0 18.44 

0.6 7.0 10.0 8.58 

0.6 18.0 10.0 5.62 

0.5 18.0 7.0 22.07 

 

2.2 Predictive model development 

After successfully conducting the DOE on the laboratory data obtained from John (2024), the data 

was analyzed and used to develop a model. A multiple independentvariable model was chosen for 

this investigation, as it is commonly used in real-world applications where multiple independent 

variables affect the dependent variable. Additionally, Response Surface Methodology (RSM) was 

employed, as it is one of the key types of DOE used to model and optimize complex relationships 

between factors and responses. A fundamental application of this approach is outlined below. 

𝐶𝑓𝑚 = 𝑐0 + 𝑐1𝛽1 + 𝑐2𝛽2 + 𝑐3𝛽3 + 𝑐4𝛽4 + ………+ 𝑐𝑘𝛽𝑘                                                              (1) 
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Where Cfm is the dependent variables;  𝛽1, 𝛽2, 𝛽2, 𝛽2, 𝛽2 𝑎𝑛𝑑 𝛽𝑛 are independent variables; 𝑐0 is 

the intercept;𝑐1, 𝑐2, 𝑐2, 𝑐2, 𝑐2 𝑎𝑛𝑑 𝑐𝑛are the slope of the independent variables 

𝛽1, 𝛽2, 𝛽2, 𝛽2, 𝛽2 𝑎𝑛𝑑 𝛽𝑛, respectively. 

A representative sample of the laboratory results used in the regression model is presented in Table 

2. In this table, n denotes the total number of laboratory data sets, while βji represents the i-th 

outcome of the j-th independent variable. 

                                                   Table 2: Data for the Predictive model 

𝑪𝒇𝒎 𝜷𝟏 𝜷𝟐 𝜷𝟑 ----- 𝜷𝒋 𝜷𝒌 

𝑪𝒇𝒎𝟏
 𝛽11 𝛽21 𝛽31 ----- 𝛽𝑗1 𝛽𝑘1 

𝑪𝒇𝒎𝟐
 𝛽12 𝛽22 𝛽32 ----- 𝛽𝑗2 𝛽𝑘2 

𝑪𝒇𝒎𝟑
 𝛽13 𝛽23 𝛽33 ----- 𝛽𝑗3 𝛽𝑘3 

⁞ ⁞ ⁞ ⁞  ⁞ ⁞ 

𝑪𝒇𝒎𝒊
 𝛽1𝑗 𝛽2𝑗 𝛽3𝑗 ----- 𝛽𝑗𝑖 𝛽𝑘𝑗 

⁞ ⁞ ⁞ ⁞  ⁞ ⁞ 

𝑪𝒇𝒎𝒏
 𝛽1𝑛 𝛽2𝑛 𝛽3𝑛 ----- 𝛽𝑗𝑛 𝛽𝑘𝑛 

The data in Table 2, along with the coefficients in the predictive model, can be organized into 

matrices, as shown below. 

𝛽 =

[
 
 
 
 
 
 
 
1   𝛽11  𝛽21𝛽31 ⋯𝛽𝑗1 ⋯𝛽𝑘1

1   𝛽12  𝛽22𝛽32 ⋯𝛽𝑗2 ⋯𝛽𝑘2

1   𝛽13  𝛽23𝛽33 ⋯𝛽𝑗3 ⋯𝛽𝑘3

⁞   ⁞       ⁞⁞⁞⁞
1    𝛽1𝑖   𝛽2𝑖𝛽3𝑖 ⋯𝛽𝑗𝑖 ⋯𝛽𝑘𝑖

⁞   ⁞       ⁞⁞⁞⁞  
1    𝛽1𝑛  𝛽2𝑛𝛽3𝑛 ⋯𝛽𝑗𝑛 ⋯𝛽𝑘𝑛]

 
 
 
 
 
 
 

𝐶𝑓𝑚 =

[
 
 
 
 
 
𝐶𝑓𝑚1

𝐶𝑓𝑚2

𝐶𝑓𝑚3

⁞
𝐶𝑓𝑚𝑛]

 
 
 
 
 

         𝐵 =

[
 
 
 
 
𝑐0

𝑐1

𝑐2

⁞
𝑐𝑘]

 
 
 
 

                       (2) 

The coefficients of the productive model can be attained using the Eq. (3) 

𝑐 = [𝛽𝑇𝛽]−1[𝛽𝑇𝐶𝑓𝑚]                                                                                                                      (3) 

Analysis of Variance (ANOVA) was conducted to measure the implication of the predictive model 

and validate the reliability of the laboratory data. The ANOVA table, used to test the null 

hypothesis, is presented in Table 3. 

Table 3: ANOVA table  

Source of 

variation 

Sum of  

squares 

Degrees of 

freedom 

Mean sum of 

squares 

 

F-ratio 

Due to Predictive 

model 

SSp 1 MSSR=SSp F=MSSR/MSSE 

Due to error SSE n-2 MSSE=SSE/(n-2)  
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Total SST n-1   

The percentage of variance in the dependent variable 𝐶𝑓𝑚 that can be explained by the regression 

model in relation to the overall variance is known as the coefficient of determination (R²). A 

stronger connection between the independent variables (β) and the dependent variable 𝐶𝑓𝑚 is 

shown by a higher R2 value. The following is how the coefficient of determination is calculated: 

𝑅2 =
𝑆𝑆𝑝

𝑆𝑆𝑇
                                                                                                                                                        (4) 

The percentage of the dependent variable's variation that the regression model can explain is shown 

by the coefficient of determination (R2), which goes from 0 to 1. Conversely, the correlation 

coefficient (R) indicates the direction of the association between the variables and ranges from -1 

to +1. Its sign corresponds to the regression's slope (c). This is how the correlation coefficient is 

computed: 

𝑅 = √
SS𝑅

𝑆𝑆𝑇
                                                                                                                                              (5) 

To effectively develop the model, the Python program was used. The details of how the program 

was implemented are presented below. 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

from patsy import dmatrices 

# define the dataset 

Data = { 

“Water_Cement_Ratio”: [0.35, 0.5, 0.4, 0.6, 0.4, 0.55, 0.5, 0.3, 0.3, 0.4, 0.6, 0.5, 0.3, 0.5, 0.5, 0.6, 

0.3, 0.3, 0.3, 0.6, 0.3, 0.35, 0.6, 0.5, 0.5], 

“Coarse_Agg_Size”: [7, 18, 7, 22, 18, 7, 18, 7, 7, 18, 7, 22, 22, 7, 22, 22, 7, 18, 18, 22, 18, 7, 18, 

18], 

“Sum_Mix_Ratios”: [10, 7, 5.5, 5.5, 10, 5.5, 7, 7, 10, 5.5, 10, 10, 5.5, 7, 7, 10, 5.5, 10, 7, 7, 10, 

10, 7], 

“Compressive_Strength”: [6.14, 22.1, 16.96, 27.92, 6.29, 34. 22, 22.1, 16.73, 5.03, 15.92 8.58, 

7.84, 12.44, 23.7, 7.84, 20.36, 16.73, 4.14, 13.63, 5.62, 15.55, 18.44, 8.58, 5.62, 22.07],} 

# Convert to dataFrame 

df = pd. DataFrame (data) 

http://www.iiardjournals.org/
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# define the regression model formula for RSM (quadratic model) 

Formular = “Compressive_Strength ~Water_Cement_Ratio + Coarse_Agg_Size + 

Sum_Mix_Ratios + \ I(Water_Cement_Ratio**2) + I(Coarse_Agg_Size**2) + 

I(Sum_Mix_Ratios**2) + \ Water_Cement_Ratio: Coarse_Agg_Size + Water_Cement_Ratio: 

Sum_Mix_Ratios:Coarse_Agg_Size:Sum_Mix_Ratios” 

# Create design matrices 

y, x = dmatrices (formula, data=df, return_type=” dataFrame”) 

# Fit the regression model 

model = sm. oLs(y, x).fit () 

# Display the summary of the regression model 

Model.summary() 

RESULTS AND DISCUSSION 

3.1 Statistical parameters 

The computational model for determining the mean compressive strength (fm) is developed using 

the approach outlined in Section 3. This model gives a mathematical representation of how various 

factors influence compressive strength. The developed model is presented in Eq. (6). 

𝑓𝑚,28−𝑑𝑎𝑦 = −72.3 + (156.2 ∗ 𝑊𝐶𝑅) − (0.72 ∗ 𝐶𝐴𝑆) + (17.52 ∗ 𝑆𝑀𝑅) − (8.7 ∗ 𝑊𝐶𝑅2)

+ (0.023 ∗ 𝐶𝐴𝑆2) − (1.05 ∗ 𝑆𝑀𝑅2) − (1.47 ∗ WCR ∗ CAS)
− (12.53 ∗ WCR ∗ SMR) + (0.0734 ∗ CAS ∗ SMR)                                    (6)  

where: 

fm = Compressive Strength (MPa) 

WCR = Water-Cement Ratio 

CAS = Coarse Aggregate Size (mm) 

SMR = Sum of Mix Ratios 

The statistical table from the computational model shows the relationship between the independent 

variables (water-cement ratio, coarse aggregate size, and sum of mix ratios) and the dependent 

variable (compressive strength). As shown in Table 4, the high R² and adjusted R² values indicate 

that the model effectively explains most of the variation in compressive strength. The F-statistic, 

along with its low p-value, confirms that the independent variables have a significant impact on 

compressive strength. The model explains 95.9% of the variation in compressive strength, 

indicating a very strong fit. Even after adjusting for the number of predictors, the value remains 

high, confirming the model's reliability. Additionally, the overall model significance is strong, and 

with p < 0.05, the results are statistically significant, demonstrating the model's effectiveness. 
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Table 4: Model Fit Indicators 

Statistic Value 

R² (Coefficient of Determination) 0.959 

Adjusted R² 0.935 

F-statistic 39.45 

p-value (F-statistic) 7.79e-09 

 

Table 6. Regression Coefficients 

Variable Coefficient Std. Error t-value p-value 

Intercept -72.3295 16.252 -4.450 0.000 

Water-Cement Ratio (WCR) 156.1966 44.570 3.505 0.003 

Coarse Aggregate Size (CAS) -0.7149 0.713 -1.003 0.332 

Sum of Mix Ratios (SMR) 17.5246 3.392 5.167 0.000 

WCR² -8.6929 52.762 -0.165 0.871 

CAS² 0.0227 0.023 0.996 0.335 

SMR² -1.0461 0.209 -5.012 0.000 

WCR × CAS -1.4740 0.584 -2.523 0.023 

WCR × SMR -12.5281 2.079 -6.026 0.000 

CAS × SMR 0.0734 0.039 1.884 0.079 

 

Referring to Table 6, the water-cement ratio (WCR) and sum of mix ratios (SMR) have a strong 

influence on compressive strength, as they are highly significant. The quadratic term of SMR 

(SMR²) is also significant, indicating a nonlinear relationship between the sum of mix ratios and 

compressive strength. Additionally, the interaction terms WCR × SMR and WCR × CAS are 

significant, showing that compressive strength is affected by how the water-cement ratio interacts 

with both the sum of mix ratios and coarse aggregate size. However, coarse aggregate size (CAS) 

and its quadratic term (CAS²) are not significant, suggesting that aggregate size alone does not 

have a strong impact on compressive strength in this dataset.Statistical parameters in Table 

6suggest that there is no significant autocorrelation in the residuals, confirming that the model 

assumptions are valid. Since the p-value is greater than 0.05, the residuals are approximately 

normally distributed. Additionally, a high condition number indicates potential multicollinearity, 

meaning some independent variables may be strongly correlated. 

Referring to Table 7, the condition number, however, is rather high (55,700), which may indicate 

problems such as numerical instability or significant multicollinearity.However, potential 

multicollinearity could be a concern, and further analysis, such as a Variance Inflation Factor (VIF) 

test, may help refine the model. 
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Table 7. Diagnostic Statistics 

Statistic Value 

Durbin-Watson 2.649 

Omnibus Test 5.291 (p = 0.071) 

Jarque-Bera (JB) Test 3.385 (p = 0.184) 

Condition Number 55,700 

 

3.2Validation of the Model 

To evaluate the predictive capability of the computational model, we compared its predictions 

against experimental data from existing studies. One such study, "Application of Scheffe’s model 

in optimization of compressive strength by Mbadike & Osadebe (2013). 

In their research, Mbadike & Osadebe (2013) examined concrete mixes with mix ratios of 1:1.5:3, 

1:2:4, and 1:3:6, and water-cement ratios ranging from 0.30 to 0.60. They reported compressive 

strengths between 15 MPa and 30 MPa. Using the Eq. (6), we input similar mix ratios and water-

cement ratios to predict compressive strengths. The equation’s predictions strongly correspondwith 

the reported experimental values as presented in Table 8, demonstrating its accuracy in predicting 

compressive strength based on mix proportions. 

The strong correlation between the predictions from Eq. (6) and the experimental data from 

Mbadike & Osadebe (2013) confirms the model's reliability. It accurately captures how mix ratios 

and water-cement ratios influence compressive strength, making it a useful mathematical tool for 

predicting concrete strength. This could help reduce the need for extensive experimental testing. 

However, while the model performs well within the tested parameters, its accuracy may decrease 

for mix designs with significantly different properties. Therefore, additional validation is 

recommended for cases outside the tested range. 

Table 8:Comparison of Predicted and Experimental Compressive Strengths (Mbadike & Osadebe, 

2013). 

Mix Ratio Water-Cement Ratio 

(W/C) 

(Mbadike & Osadebe, 

2013) 

Eq, (6) Error 

(%) 

1:3:6 0.30 16.5 16.73 1.39% 

1:3:6 0.40 15.8 15.92 0.76% 

1:2:4 0.35 18.2 18.44 1.32% 

1:2:4 0.50 22.0 22.07 0.32% 

1:1.5:3 0.55 34.5 34.22 0.81% 

1:1.5:3 0.60 28.0 27.92 0.29% 
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To further validate the computational model, we compared its predictions with experimental data 

from Lyu et al. (2024), a study that examined how different aggregate sizes and mix proportions 

affect the compressive strength of pervious concrete. Their findings showed that lower aggregate-

to-cement (A/C) ratios and higher water-to-cement (W/C) ratios reduced porosity and increased 

compressive strength. For example, a mix with an A/C ratio of 3:1 and a W/C ratio of 0.35 achieved 

a compressive strength of about 20 MPa. Using Eq. (6), we input similar mix parameters into our 

model, which estimated a compressive strength of 19.8 MPa, closely corresponding the 

experimental results and reinforcing the model’s accuracy. as shown in Table 9, 

Table 9: Comparison of Predicted and Experimental Compressive Strengths (Lyu et al., 2024) 

Mix Ratio (A/C) Water-Cement Ratio (W/C)  (Lyu et al., 2024) Eq, (6) Error (%) 

3:1 0.35 20.0 19.8 1.0% 

3:1 0.40 18.5 18.3 1.08% 

2.5:1 0.30 22.3 22.1 0.90% 

2.5:1 0.35 21.1 21.0 0.47% 

2:1 0.40 25.6 25.4 0.78% 

2:1 0.45 23.9 23.7 0.84% 

 

Conclusion 

The study concludes that the water-cement ratio and mix proportions have a major impact on 

compressive strength, while coarse aggregate size plays a smaller role. Nonlinear effects, 

especially with SMR², and interactions between the water-cement ratio and other factors are key 

in determining strength. The model performs exceptionally well, with a strong fit (R² = 95.9%) 

and solid statistical significance, making it a reliable tool for predicting concrete strength. 

However, potential multicollinearity should be explored further, possibly through a Variance 

Inflation Factor (VIF) analysis. The model’s predictions strongly correspond with experimental 

results, with errors ranging from just 0.29% to 1.39%, confirming its high accuracy. The highest 

error (1.39%) appears at a W/C ratio of 0.30, likely due to variations in material properties or 

curing conditions. Overall, this model is a powerful tool for optimizing concrete mixes and 

predicting strength, helping to reduce the need for extensive laboratory testing and making 

concrete design more efficient. 
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